Recalling Complex Sequences of Patterns Using Neurons with Hysteretic Property
نویسندگان
چکیده
A network based on the Inverse Function Delayed (ID) model which can recall complex temporal sequences of patterns, is proposed. Complex pattern can be dealt with by extending the network, for each main unit, with buffer units that carries the role of a memory. Replacing the cross correlated weight matrix with a matrix computed from a linear separation problem point of view, these pattern can be stored and recalled even if they are highly correlated. It is shown that for a rather big network complex patterns of degree 3, consisting of highly correlated patterns, can be recalled.
منابع مشابه
High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences
Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملEncoding the Temporal Statistics of Markovian Sequences of Stimuli in Recurrent Neuronal Networks
Encoding, storing, and recalling a temporal sequence of stimuli in a neuronal network can be achieved by creating associations between pairs of stimuli that are contiguous in time. This idea is illustrated by studying the behavior of a neural network model with binary neurons and binary stochastic synapses. The network extracts in an unsupervised manner the temporal statistics of the sequence o...
متن کاملThe hysteretic Hopfield neural network
A new neuron activation function based on a property found in physical systems--hysteresis--is proposed. We incorporate this neuron activation in a fully connected dynamical system to form the hysteretic Hopfield neural network (HHNN). We then present an analog implementation of this architecture and its associated dynamical equation and energy function.We proceed to prove Lyapunov stability fo...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کامل